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We present experimental data on the direct enstrophy cascade in decaying two-dimensional
turbulence. Velocity and vorticity fields are obtained using particle tracking velocimetry. From those
fields we directly compute the enstrophy and energy flux by using a filtering technique inspired by
large-eddy simulations. This allows considerable insight into the physical processes of turbulence when
compared with structure-function or spectral analysis. The direct cascade of enstrophy is weakly
forward, with almost as much backscatter as down-scale enstrophy transfer, whereas the inverse energy
cascade is strongly upscale with a modest amount of backscatter.
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Conclusions about how kinetic energy or enstrophy are
transported from one length scale to another in a turbu-
lent fluid are often obtained through the comparison of
measured velocity or vorticity structure functions with
predictions obtained by theoretical models [1,2]. There is
considerable ambiguity in this approach: The scaling
behavior of a given structure function is not necessarily
connected with the scale-to-scale transport property as-
sumed in the model. This approach is also limited to
exploring average scale-to-scale transport throughout
the bulk of the fluid, rather than the local transport in
a given region. Considering the importance of scale-
to-scale transport in turbulence phenomenology, more
informative measurement techniques are necessary to
establish transport behavior in turbulent fluids.

An alternative to the structure-function approach is a
filter-space technique (FST) that prescribes a general
method for measuring the scale-to-scale transport of a
given quantity. In this method, the flow is separated into
large-scale and small-scale components, as is done in
large-eddy direct numerical simulations (DNS) [2,3],
from which the interaction between the two components
can be determined. A similar approach was first proposed
by Kraichnan [4], and has recently been used to analyze
numerical simulations of 2D and 3D turbulence [5,6].

Here, the scale-to-scale energy and enstrophy transport
in decaying 2D turbulence in a soap-film channel is
investigated using FST. For length scales around and
below the energy injection scale, [y, the average scale-
to-scale energy flux in decaying 2D turbulence is upscale,
that is, energy is transported from small to large scales,
and the average enstrophy flux is in the opposite direc-
tion, i.e., down scale. Neither of the quantities, however,
obtains a constant flux for length scales smaller than /;,
thus neither energy nor enstrophy is being transported
inertially through this range of scales. For length scales
larger than [;,;, however, the energy flux seems to asymp-
tote to a constant value, indicative of inertial transport.
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Probability distribution functions (PDFs) of energy and
enstrophy flux reveal that the enstrophy flux for scales
around /;;; is less efficient than energy transfer: There is a
higher probability of finding enstrophy being transported
against the mean direction (i.e., upscale) than for energy.

The experimental measurements were carried out in a
flowing soap-film channel, a quasi-2D system for which
decaying turbulence of low to moderate Reynolds number
(10> = Re = 10%) can be easily generated. The channel
was 5 cm wide and was inclined at an angle of 60° with
respect to vertical. The mean flow was 150 cm/s and the
film thickness was 15 wm. A more detailed description of
the channel can be found in [7,8]. Using the empirical
relationships measured in [9], the film’s kinematic vis-
cosity was v =~ 0.03 cm?/s. The turbulence generating
grid used rods of 0.12 cm diameter with 0.22 cm spacing
between the rods. Thus, the blocking fraction is around
0.3, which may seem high when compared with 3D
turbulence experiments, but is the standard configuration
for obtaining significant turbulence in 2D soap-film flows
[7,10,11]. The resultant Reynolds number, Re = ul/v, was
1100 based on the mean-flow velocity and the injection
scale of /;,; = 0.22 cm. The turbulent velocity u(x) and
vorticity w(x) fields created by the grid were obtained by
tracking 3-5 um hollow glass spheres (density approxi-
mately 1.2 g/cc) withina 1 X 1 cm? region located 1.5 cm
downstream of the grid (20-30 eddy rotation times)
[12,13]. The particles were illuminated with a double
pulsed Nd:YAG laser and their images captured by a
1024 X 1024 pixel camera. More than 10* particles
were individually tracked for each image pair and their
velocities and local shears were interpolated to a discrete
65 X 65 grid. Five-hundred velocity and vorticity fields
were obtained in this way. A typical vorticity field is
shown in Fig. 1(a).

The current phenomenological model of 2D turbulence
is based largely upon the work of Kraichnan [14,15] and
Batchelor [16]. In 2D turbulent systems, there are two
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FIG. 1. (a) Vorticity field (white positive, black negative),
(b) enstrophy flux isocontours, Z", and (c) energy flux iso-
contours, Q”, for I = 0.13 cm. Dashed isocontours represent
negative values of energy or enstrophy flux. The isocontours are
superimposed upon the enstrophy field (darker color represents
increasing values of enstrophy). The hatch marks represent
1 mm increments.

ranges bracketing the injection length scale, [;,;, through
which energy (mean-square velocity, |u|?/2) or enstrophy
(mean-square vorticity, w?/2) can be transferred iner-
tially. The direct cascade range exists for length scales
I, <1<l and transports enstrophy from the injection
scale to the viscous scale /.. In the inverse cascade range,
energy is transported from [, to scales larger than the
injection scale until some boundary scale, set by either
the physical system size or an external dissipation mecha-
nism, is encountered. Inertial transfer defines the condi-
tion where enstrophy or energy is transferred between
scales without loss. An inertial range is, therefore, a range
of length scale characterized by a constant energy or
enstrophy flux.

Given the above picture and using various assumptions,
one can show that in an inertial direct cascade range the
second-order structure functions of longitudinal velocity
difference, S,(r) = {((u(x +r) —u(x)]-#)?), and the
second-order structure function of vorticity difference,
80, (r) = {(w(x + r) — w(x))?), should scale as > and
10, respectively (with logarithmic corrections to the lat-
ter) [17]. Here (-) denotes an ensemble average and r =
I/l If an inertial inverse energy cascade range exists,
then S,(r) should scale as r2/3 and 6Q,(r) as r—1/3.

Measurements of these structure functions are shown
in Fig. 2. The functions, although not an exact match to
the theoretical predictions, are in approximate agreement
with theory in the direct cascade range, i.e., for [ <[,.
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FIG. 2. The second moment of longitudinal velocity differ-
ence, S,(r) (O0), and the second moment of vorticity difference,
8Q;(r) (A), as a function of r = [/;;. The solid line represents
a power law fit of S,(r) yielding an exponent of 1.7. The dashed
line indicates a logarithmic dependence of §Q,(r).

Moreover, there seems to be no scaling behavior at length
scales larger than the injection scale. Plots such as those
in Fig. 2 are typical of 2D decaying turbulence systems
[7,10,11] and are interpreted as evidence for an inertial
direct enstrophy cascade. Similarly, the absence of struc-
ture-function scaling for [ > [;;; implies that there is no
inertial energy cascade. The problem is that these con-
clusions are indirect and nothing further can be obtained
from the structure-function approach. In contrast, FST
provides a direct measure of inertial transport. Its appli-
cation to the experimental data will demonstrate that the
indirect conclusions drawn from structure-function
analysis are incorrect.

The objective of FST is to transform the measured
fields u(x) and w(x) into spatially local scale-to-scale
energy and enstrophy transport information [5]. This will
be done below for enstrophy flux; the extension of the
technique to the case of energy flux is straightforward.
Start by defining a filter function, G, with a typical
length scale, . Although the exact nature of G? is not
important for this technique, for concreteness take G to
be a Gaussian of k space half-width 7 = 27/1. Applying
the filter function G to an arbitrary field f(x) yields the
large-scale field, f;(x), i.e., a field with Fourier modes
larger than 277/l suppressed. Convolving the filter func-
tion with Euler’s equation for vorticity in a 2D fluid yields

0 0
Yo S50, (1)

Jw
— () ——
at X, X,

where o' = (wu,); — (u,);w,. The Einstein summation

rule is used here over the subscript s (not over /). The
large-scale field advects in the same manner as the full
field, that is to say the left side is simply the Euler
equation for the large-scale field. In addition, there exist
a coupling term on the right-hand side that accounts for
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the motion of large-scale vorticity by small-scale
fluctuations.

The evolution equation for the large-scale enstrophy,
Q" =1 w2, within which the coupling term, taking the
form w;d; o, is obtained by multiplying Eq. (1) by
the large-scale vorticity, ;. The coupling term can affect
the large-scale enstrophy at a given point in two ways: by
spatially redistributing large-scale enstrophy or by mov-
ing enstrophy contained in wave numbers above 27/[ to
wave numbers below 277/1. The latter of these two mecha-
nisms is the scale-to-scale enstrophy transport term. To
separate it out, utilize the Leibniz rule on the right-hand
side to obtain

d d d d
=00+ =)0 = = (o) + ol =L,
at 0x, 0x; 0x;

2
Under homogenous conditions, the ensemble average of
the first term on the right-hand side disappears. This term
is associated with spatial redistribution of enstrophy. The
second term represents scale-to-scale transport of ens-
trophy. We define Z() = —al (0w;)/(9x,)] as the scale-
to-scale enstrophy transport through a length scale /. The
negative sign is used so that positive Z) represents down-
scale transfer of enstrophy and negative represents up-
scale transfer. A similar set of equations can be derived
for energy transport starting from the 2D Euler equations
for velocity. In that case, the scale-to-scale transport
of energy is written Q¥ = —f(,ﬂ){[a(u,)l]/(axs)} with
&9 = (u,ug); — (uy);(u,); and the same sign convention
as for Z¥.

A determination of Z?) and Q' from the soap-film data
yields typical flux isocontours shown in Figs. 1(b) and
1(c). The isocontours have been superimposed onto the
enstrophy field, = w?/2. Continuous regions with
large values of enstrophy (dark regions) correspond to
vortices. The extrema of the scale-to-scale energy and
enstrophy flux isocontours are both grouped about the
edges of vortices, whereas regions removed from strong
vortices have comparatively weak flux fields. There is
considerable cancellation so that strong conclusions re-
garding correlations of flow structures with mean transfer
cannot be made at this time. Nevertheless, these strong
vortices contribute heavily to the wings of the transfer
PDFs and are important features of the flow.

To obtain a quantitative measure of the average energy
and enstrophy transfer, the PDFs of 500 statistically
independent Z() and Q" fields were evaluated for a range
of length scales [. The PDFs, shown in Fig. 3, have been
normalized by their respective rms fluctuations but the
mean has not been removed. The behavior of the two
distributions is markedly different. Although both are
asymmetric, the enstrophy flux distribution is positively
skewed whereas the energy flux is negatively skewed. The
mean values of the PDFs are plotted as a function of scale
in Fig. 4, where one sees that the average energy flux is
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FIG. 3. Normalized probability distribution functions for (a)
the scale-to-scale enstrophy flux Z() and (b) the scale-to-scale
energy flux QU evaluated at length scales I = 0.06 cm (solid
line), [ = 0.1 cm (dashed line), [ = 0.15 cm (dash-dotted line),
and / = 0.2 cm (dash-dot-dotted line).

upscale and the average enstrophy flux is predominantly
down scale.

The average enstrophy flux shown in Fig. 4 never
becomes constant. Therefore in the soap-film channel an
inertial enstrophy flux range is not achieved, in direct
contradiction to the conclusions drawn from the struc-
ture-function analysis. Rather, the average flux increases
slightly below the injection scale, then falls off at scales
below half the injection scale. The increase below the
injection scale may arise from the injection of enstrophy

104502-3



VOLUME 90, NUMBER 10 PHYSICAL

REVIEW LETTERS

week ending
14 MARCH 2003

~ :2
" i =
@2 . vo
~ I S
> -
._N : -~
~ '_ ~O
-2 I ~
4 _
L. 1 L 1 1
0 0.5 1 1.5 2

lflinj

FIG. 4. The average enstrophy ([J) and energy flux (A) as a
function of length scale I/ ligj-

over a range of length scales around /;,; rather than at
precisely this scale. The fall off in enstrophy transfer at
small scales is due to the frictional effects of air drag
acting on the soap-film channel. Results from numerical
simulations, to be presented elsewhere, find almost iden-
tical behavior in the enstrophy flux when a linear fric-
tional drag is included in the equations of motion.

In contrast to the enstrophy flux, the average energy
flux does asymptote at length scales larger than the
injection scale. Although more extensive measurements
are needed, the flattening of the energy flux at a negative
value is indicative of a range of scales through which
energy transfer is upscale and inertial. The average en-
ergy flux also effectively disappears for length scales
smaller than half the injection scale, i.e., at the same
length scale where the average enstrophy flux begins to
decay. The exact behavior of the curves in Fig. 4 is some-
what dependent on the form of the filter function, G¥. A
number of sharper filter functions of the form e~ ¥/7" for
m > 2 were used in the FSTanalysis without significantly
affecting the above conclusions (m = 2 is the Gaussian
filter).

The PDFs in Fig. 3 can also be used to quantify the
amount of backscatter present in the energy or enstrophy
flux. Backscatter is defined here as the motion of energy
or enstrophy opposite the direction of the mean. In the
case of enstrophy, the difference in the probability of
down-scale to upscale transfer, 6P(Z") = |P(z?) > 0) —
P(zW < 0)| = 0.1 for length scales smaller than the in-
jection scale. The same quantity for energy transfer,
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5P(Q") = 0.4 for length scales between the injection
scale and half the injection scale. At scales smaller
than this, the backscatter of energy quickly disappears.
Thus, the mechanism driving upscale energy flux in
decaying turbulence is considerably more efficient, i.e.,
contains less backscatter, than its counterpart driving
down-scale enstrophy transfer. The degree of asymmetry
found in the enstrophy flux PDF is larger than similar
results obtained using 2D numerical simulations [5],
where 8P[Z(] = 0.01. The simulations, however, were
performed at higher effective Reynolds number and were
forced rather than decaying. Surprisingly, the magnitude
of asymmetry found in the energy flux PDFs is compa-
rable to results obtained in DNS of 3D turbulence [6].
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